
¿Qué te parecen estos?
Primer Niver menores de 13 años
PROBLEMA 1
En la pizarra había seis figuras: un círculo, un triángulo, un cuadrado, un trapecio, un pentágono y un hexágono, pintadas de seis colores: azul, blanco, rojo, amarillo, verde y marrón. Cada figura tenía un solo color y todas las figuras eran de colores distintos. Al día siguiente se preguntó de qué color era cada figura.
Pablo respondió: “el círculo era rojo, el triángulo era azul, el cuadrado era blanco, el trapecio era verde, el pentágono era marrón y el hexágono era amarillo”.
Sofía respondió: “el círculo era amarillo, el triángulo era verde, el cuadrado era rojo, el trapecio era azul, el pentágono era marrón y el hexágono era blanco”.
Pablo se equivocó tres veces y Sofía dos veces, y se sabe que el pentágono era marrón.
Determina si es posible saber con certeza cuál era el color de cada una de las figuras.
PROBLEMA 2
Un número entero se llama autodivi si es divisible entre un número de dos cifras formado por sus dos últimos dígitos (decenas y unidades). Por ejemplo, 78013 es autodivi pues es divisible entre 13, 8517 es autodivi pues es divisible entre 17.
Halla seis números enteros consecutivos que sean autodivi y que tengan las cifras de las unidades, de las decenas y de las centenas distintas de 0.
SEGUNDO NIVER MAYORES DE 13 Y MENORES DE 15
PROBLEMA 1
Determina el menor número de tres cifras que sea el producto de dos números de dos cifras, de modo que las siete cifras de estos tres números sean todas diferentes.
PROBLEMA 2
Gonzalo escribe en la pizarra cuatro números elegidos entre 0,1,2,3 ó 4. Puede repetir números.
Nicolás realiza repetidas veces la siguiente operación: cambia uno de los números, a su elección, por el resto de dividir entre 5 el producto de otros dos números de la pizarra, a su elección.
El objetivo de Nicolás es lograr que los cuatro números sean iguales. Determina si Gonzalo puede elegir los cuatro números iniciales de modo que a Nicolás le sea imposible lograr su objetivo.